Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-Benzyl 3-(3-nitrobenzylidene)dithiocarbazate

Huan-Qiu Li, Yin Luo, Xuan Qin and Hai-Liang Zhu*

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: hailiang_zhu@163.com

Received 30 October 2009; accepted 30 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.045; wR factor = 0.106; data-to-parameter ratio = 13.2.

In the title compound, $C_{15}H_{13}N_3O_2S_2$, the dihedral angle between the aromatic rings is 87.8 (2)°. In the crystal, inversion dimers occur linked by pairs of $N-H\cdots$ S hydrogen bonds.

Related literature

For background to carbodithioates, see: Tarafder et al. (2002).

Experimental

Crystal data $C_{15}H_{13}N_3O_2S_2$ $M_r = 331.40$

Monoclinic, $P2_1/c$ a = 5.2175 (10) Å

b = 26.213(5) Å	
c = 11.887 (2) Å	
$\beta = 90.67 (3)^{\circ}$	
V = 1625.6 (6) Å ³	
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	2788 independent reflections 951 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.097$
(North et al., 1968)	200 standard reflections
$T_{\min} = 0.906, T_{\max} = 0.967$	every 3 reflections
486 measured reflections	intensity decay: 1%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of

Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^{-1}$

 $0.30 \times 0.30 \times 0.10 \text{ mm}$

T = 293 K

If atoms freated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

5

2

Hydrogen-bond geometry (Å, °).

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was financed by a grant from the National Natural Science Foundation of China (project 30772627) and the China Postdoctoral Science Foundation (project 20080441043).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5203).

References

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarafder, M. T. H., Chew, K.-B., Crouse, K. C., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.

supplementary materials

Acta Cryst. (2009). E65, o3080 [doi:10.1107/81600536809045723]

(E)-Benzyl 3-(3-nitrobenzylidene)dithiocarbazate

H.-Q. Li, Y. Luo, X. Qin and H.-L. Zhu

Experimental

The title compound was prepared by stirring a mixture of benzyl hydrazinecarbodithioate (396 mg, 2 mmol), 3-nitrobenzaldehyde (302 mg, 2 mmol) in methanol (10 ml) for 1 h. After keeping the filtrate in air for 7 d, yellow blocks of (I) were formed.

Refinement

The N-bound N atom was located in a difference map and freely refined. The other H atoms were positioned geometrically (C-H = 0.93 Å for the aromatic H atoms and C-H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The structure of the title compound (I) showing 50% displacement ellipsoids.

(E)-Benzyl 3-(3-nitrobenzylidene)dithiocarbazate

Crystal data	
$C_{15}H_{13}N_3O_2S_2$	$F_{000} = 688$
$M_r = 331.40$	$D_{\rm x} = 1.354 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
<i>a</i> = 5.2175 (10) Å	$\theta = 9-12^{\circ}$
b = 26.213 (5) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 11.887 (2) Å	T = 293 K
$\beta = 90.67 \ (3)^{\circ}$	Block, yellow
V = 1625.6 (6) Å ³	$0.30 \times 0.30 \times 0.10 \text{ mm}$
Z = 4	

Data collection

. 1 1 .

 α

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.097$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$

supplementary materials

Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 293 K	$h = -6 \rightarrow 5$
$\omega/2\theta$ scans	$k = -31 \rightarrow 29$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -14 \rightarrow 14$
$T_{\min} = 0.906, \ T_{\max} = 0.967$	200 standard reflections
9486 measured reflections	every 3 reflections
2788 independent reflections	intensity decay: 1%
951 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement

 $wR(F^2) = 0.106$

S = 0.73

2788 reflections

211 parameters

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $w = 1/[\sigma^2(F_0^2) + (0.0448P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.15 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.5564 (10)	0.38939 (18)	1.0058 (4)	0.1065 (16)
H1	1.6613	0.3787	0.9477	0.128*
C2	1.5833 (10)	0.36729 (18)	1.1102 (5)	0.1215 (18)
H2	1.7070	0.3423	1.1222	0.146*
C3	1.4312 (11)	0.38176 (19)	1.1951 (4)	0.0986 (14)
H3	1.4491	0.3668	1.2658	0.118*
C4	1.2549 (11)	0.4177 (2)	1.1770 (4)	0.1203 (18)
H4	1.1474	0.4275	1.2349	0.144*

C5	1.2307 (9)	0.44050 (17)	1.0726 (5)	0.1170 (17)
H5	1.1095	0.4661	1.0616	0.140*
C6	1.3817 (9)	0.42606 (17)	0.9862 (4)	0.0740 (11)
C7	1.3604 (11)	0.4511 (2)	0.8717 (4)	0.0893 (15)
C8	1.0763 (8)	0.45488 (13)	0.6740 (3)	0.0662 (10)
C9	0.5747 (8)	0.38503 (16)	0.5578 (3)	0.0740 (12)
Н9	0.5412	0.4063	0.4967	0.089*
C10	0.4214 (8)	0.33846 (15)	0.5727 (3)	0.0648 (10)
C11	0.2307 (8)	0.32751 (16)	0.4958 (3)	0.0716 (11)
H11	0.1940	0.3499	0.4371	0.086*
C12	0.0946 (8)	0.28268 (18)	0.5071 (4)	0.0763 (12)
C13	0.1352 (9)	0.24961 (16)	0.5946 (4)	0.0997 (15)
H13	0.0389	0.2199	0.6014	0.120*
C14	0.3244 (9)	0.26178 (18)	0.6727 (4)	0.1020 (15)
H14	0.3563	0.2399	0.7329	0.122*
C15	0.4658 (8)	0.30577 (16)	0.6623 (3)	0.0838 (12)
H15	0.5917	0.3136	0.7156	0.101*
H1A	0.851 (7)	0.4589 (13)	0.540 (3)	0.100 (15)*
N1	0.8928 (7)	0.43995 (14)	0.6035 (3)	0.0779 (10)
N2	0.7523 (7)	0.39663 (13)	0.6274 (3)	0.0739 (9)
N3	-0.1075 (8)	0.27046 (17)	0.4218 (4)	0.0953 (12)
01	-0.1536 (6)	0.30218 (13)	0.3506 (3)	0.1166 (11)
O2	-0.2120 (8)	0.22932 (15)	0.4285 (3)	0.1572 (16)
S1	1.1060 (2)	0.41799 (4)	0.79464 (9)	0.0806 (4)
S2	1.2592 (2)	0.50568 (4)	0.64490 (9)	0.0898 (4)
H7A	1.508 (7)	0.4456 (14)	0.827 (3)	0.109 (17)*
H7B	1.308 (8)	0.4842 (16)	0.871 (3)	0.14 (2)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.121 (4)	0.107 (4)	0.092 (4)	0.028 (3)	0.039 (3)	0.019 (3)
C2	0.128 (4)	0.128 (4)	0.109 (4)	0.051 (3)	0.027 (4)	0.034 (4)
C3	0.108 (4)	0.102 (4)	0.085 (4)	0.000 (3)	-0.004 (3)	0.005 (3)
C4	0.135 (5)	0.142 (5)	0.084 (4)	0.029 (4)	0.022 (3)	-0.002 (3)
C5	0.123 (4)	0.132 (4)	0.097 (4)	0.060 (3)	0.015 (3)	0.008 (3)
C6	0.070 (3)	0.076 (3)	0.076 (3)	-0.005 (2)	-0.005 (3)	-0.001 (3)
C7	0.077 (4)	0.109 (5)	0.082 (4)	-0.009 (3)	-0.010 (3)	0.016 (3)
C8	0.063 (3)	0.068 (3)	0.068 (3)	-0.002 (2)	0.001 (2)	0.007 (2)
C9	0.080 (3)	0.078 (3)	0.064 (3)	-0.005 (3)	0.002 (3)	0.005 (2)
C10	0.063 (3)	0.063 (3)	0.068 (3)	-0.006 (2)	0.006 (2)	0.000(2)
C11	0.068 (3)	0.079 (3)	0.067 (3)	-0.007 (3)	0.003 (3)	0.005 (2)
C12	0.070 (3)	0.089 (4)	0.069 (3)	-0.012 (3)	-0.002 (3)	0.000 (3)
C13	0.103 (4)	0.089 (3)	0.107 (4)	-0.033 (3)	-0.017 (3)	0.027 (3)
C14	0.111 (4)	0.087 (4)	0.108 (4)	-0.020 (3)	-0.015 (3)	0.035 (3)
C15	0.094 (3)	0.078 (3)	0.079 (3)	-0.006 (3)	-0.013 (2)	0.012 (3)
N1	0.080 (3)	0.079 (3)	0.075 (3)	-0.010 (2)	-0.008 (2)	0.015 (2)
N2	0.076 (3)	0.068 (2)	0.077 (2)	-0.005 (2)	0.002 (2)	0.0053 (19)

supplementary materials

N3	0.096 (3)	0.097 (4)	0.094 (3)	-0.010 (3)	-0.005 (3)	0.000 (3)
01	0.114 (3)	0.127 (3)	0.108 (2)	-0.019(2)	-0.031(2)	0.016 (2)
02	0.180(4)	0.127(3)	0.150(2)	-0.082(3)	-0.045(3)	0.017(3)
S1	0.0798 (8)	0.0879 (8)	0.0741(7)	-0.0113(6)	0.0010(6)	0.017(3)
\$1 \$2	0.0950 (9)	0.0876 (8)	0.0711(7) 0.0917(8)	-0.0215(7)	-0.0063(6)	0.0101 (0)
52	0.0950 (9)	0.0020 (0)	0.0917 (0)	0.0215 (7)	0.0003 (0)	0.0142 (0)
Geometric paran	neters (Å, °)					
C1—C6		1.343 (5)	C9—N2		1.272	2 (4)
C1—C2		1.375 (5)	C9—C1	0	1.471	(5)
C1—H1		0.9300	С9—Н9	•	0.930	00
C2—C3		1.346 (5)	C10—C	11	1.373	3 (4)
С2—Н2		0.9300	C10—C	15	1.384	l (5)
C3—C4		1.332 (5)	C11—C	12	1.380) (5)
С3—Н3		0.9300	С11—Н	11	0.930	00
C4—C5		1.381 (5)	C12—C	13	1.368	3 (5)
C4—H4		0.9300	C12—N	3	1.489	9 (5)
C5—C6		1.355 (5)	C13—C	14	1.384	l (5)
С5—Н5		0.9300	С13—Н	13	0.930	00
С6—С7		1.514 (5)	C14—C	15	1.375	5 (5)
C7—S1		1.823 (5)	С14—Н	14	0.9300	
C7—H7A		0.95 (4)	С15—Н	15	0.930	00
С7—Н7В		0.91 (4)	N1—N2	2	1.383 (4)	
C8—N1		1.324 (4)	N1—H1A		0.93 (3)	
C8—S2		1.676 (4)	N3—O1		1.208	3 (4)
C8—S1		1.735 (4)	N3—O2		1.212	2 (4)
C6—C1—C2		121.3 (4)	N2—C9	—Н9	119.6	ò
C6—C1—H1		119.3	C10—C	9—Н9	119.6	5
C2-C1-H1		119.3	C11—C10—C15		119.7	' (4)
C3—C2—C1		120.2 (5)	C11—C10—C9		118.9 (4)	
С3—С2—Н2		119.9	C15—C10—C9		121.3 (4)	
С1—С2—Н2		119.9	C10—C	11—C12	118.9	9 (4)
C4—C3—C2		119.3 (5)	C10—C	11—H11	120.0	5
С4—С3—Н3		120.3	C12—C	11—H11	120.0	5
С2—С3—Н3		120.3	С13—С	12—C11	122.5	5 (4)
C3—C4—C5		120.5 (5)	С13—С	12—N3	118.9 (4)	
C3—C4—H4		119.8	C11—C	12—N3	118.5 (4)	
C5—C4—H4		119.8	C12—C	13—C14	117.8 (4)	
C6—C5—C4		120.8 (4)	C12—C	13—H13	121.1	
С6—С5—Н5		119.6	C14—C	13—H13	121.1	l
C4—C5—H5		119.6	C15—C	14—C13	120.8	3 (4)
C1—C6—C5		117.9 (4)	C15—C	14—H14	119.6	5
C1—C6—C7		120.6 (5)	С13—С	14—H14	119.6)
С5—С6—С7		121.6 (5)	C14—C	15—C10	120.2	2 (4)
C6—C7—S1		106.9 (3)	C14—C	15—H15	119.9)
С6—С7—Н7А		113 (2)	C10—C	15—H15	119.9)
S1—C7—H7A		104 (2)	C8—N1	—N2	119.6	5 (4)
С6—С7—Н7В		116 (3)	C8—N1	—H1A	121 (2)
S1—C7—H7B		104 (3)	N2—N1	—H1A	119 (2)

Н7А—С7—Н7В	113 (4)	C9—N2—N1	116.5 (4)
N1—C8—S2	120.9 (3)	O1—N3—O2	124.9 (5)
N1—C8—S1	114.5 (3)	O1—N3—C12	117.6 (4)
S2—C8—S1	124.6 (3)	O2—N3—C12	117.5 (5)
N2—C9—C10	120.9 (4)	C8—S1—C7	102.0 (2)
C6—C1—C2—C3	0.8 (8)	N3—C12—C13—C14	179.9 (4)
C1—C2—C3—C4	-0.1 (8)	C12—C13—C14—C15	0.1 (7)
C2—C3—C4—C5	-1.0 (8)	C13-C14-C15-C10	-0.4 (6)
C3—C4—C5—C6	1.4 (8)	C11-C10-C15-C14	1.7 (6)
C2-C1-C6-C5	-0.4 (7)	C9-C10-C15-C14	-178.3 (3)
C2-C1-C6-C7	178.1 (4)	S2—C8—N1—N2	177.2 (2)
C4—C5—C6—C1	-0.7 (7)	S1—C8—N1—N2	-2.9 (4)
C4—C5—C6—C7	-179.2 (4)	C10—C9—N2—N1	177.3 (3)
C1—C6—C7—S1	96.1 (5)	C8—N1—N2—C9	178.3 (3)
C5—C6—C7—S1	-85.4 (5)	C13—C12—N3—O1	174.2 (4)
N2-C9-C10-C11	179.7 (3)	C11—C12—N3—O1	-4.7 (6)
N2-C9-C10-C15	-0.3 (5)	C13—C12—N3—O2	-6.3 (6)
C15-C10-C11-C12	-2.8 (5)	C11—C12—N3—O2	174.8 (4)
C9—C10—C11—C12	177.2 (3)	N1—C8—S1—C7	-177.5 (3)
C10-C11-C12-C13	2.6 (6)	S2—C8—S1—C7	2.4 (3)
C10-C11-C12-N3	-178.5 (3)	C6—C7—S1—C8	173.1 (4)
C11—C12—C13—C14	-1.3 (6)		

Hydrogen-bond geometry (Å, °,)
-------------------------------	---

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A···S2 ⁱ	0.93 (3)	2.45 (4)	3.365 (4)	170 (3)
Symmetry codes: (i) $-x+2, -y+1, -z+1$.				

